Genetic Mutations & Gene Therapy

What is the current status of gene therapy research?

The Food and Drug Administration (FDA) has not yet approved any human gene therapy product for sale. Current gene therapy is experimental and has not proven very successful in clinical trials. Little progress has been made since the first gene therapy clinical trial began in 1990. In 1999, gene therapy suffered a major setback with the death of 18-year-old Jesse Gelsinger. Jesse was participating in a gene therapy trial for ornithine transcarboxylase deficiency (OTCD). He died from multiple organ failures 4 days after starting the treatment. His death is believed to have been triggered by a severe immune response to the adenovirus carrier.

Another major blow came in January 2003, when the FDA placed a temporary halt on all gene therapy trials using retroviral vectors in blood stem cells. FDA took this action after it learned that a second child treated in a French gene therapy trial had developed a leukemia-like condition. Both this child and another who had developed a similar condition in August 2002 had been successfully treated by gene therapy for X-linked severe combined immunodeficiency disease (X-SCID), also known as "bubble baby syndrome."

FDA's Biological Response Modifiers Advisory Committee (BRMAC) met at the end of February 2003 to discuss possible measures that could allow a number of retroviral gene therapy trials for treatment of life-threatening diseases to proceed with appropriate safeguards. In April of 2003 the FDA eased the ban on gene therapy trials using retroviral vectors in blood stem cells.

(Citation 77)

 

What factors have kept gene therapy from becoming an effective treatment for genetic disease?

  • Short-lived nature of gene therapy - Before gene therapy can become a permanent cure for any condition, the therapeutic DNA introduced into target cells must remain functional and the cells containing the therapeutic DNA must be long-lived and stable. Problems with integrating therapeutic DNA into the genome and the rapidly dividing nature of many cells prevent gene therapy from achieving any long-term benefits. Patients will have to undergo multiple rounds of gene therapy.

  • Immune response - Anytime a foreign object is introduced into human tissues, the immune system is designed to attack the invader. The risk of stimulating the immune system in a way that reduces gene therapy effectiveness is always a potential risk. Furthermore, the immune system's enhanced response to invaders it has seen before makes it difficult for gene therapy to be repeated in patients.

  • Problems with viral vectors - Viruses, while the carrier of choice in most gene therapy studies, present a variety of potential problems to the patient --toxicity, immune and inflammatory responses, and gene control and targeting issues. In addition, there is always the fear that the viral vector, once inside the patient, may recover its ability to cause disease.

  • Multigene disorders - Conditions or disorders that arise from mutations in a single gene are the best candidates for gene therapy. Unfortunately, some the most commonly occurring disorders, such as heart disease, high blood pressure, Alzheimer's disease, arthritis, and diabetes, are caused by the combined effects of variations in many genes. Multigene or multifactorial disorders such as these would be especially difficult to treat effectively using gene therapy.

 

What are some recent developments in gene therapy research?

  • Nanotechnology + gene therapy yields treatment to torpedo cancer. March, 2009. The School of Pharmacy in London is testing a treatment in mice, which delivers genes wrapped in nanoparticles to cancer cells to target and destroy hard-to-reach cancer cells. Read BBC article.

  • Results of world's first gene therapy for inherited blindness show sight improvement. 28 April 2008. UK researchers from the UCL Institute of Ophthalmology and Moorfields Eye Hospital NIHR Biomedical Research Centre have announced results from the world’s first clinical trial to test a revolutionary gene therapy treatment for a type of inherited blindness. The results, published today in the New England Journal of Medicine, show that the experimental treatment is safe and can improve sight. The findings are a landmark for gene therapy technology and could have a significant impact on future treatments for eye disease. Read Press Release.

    Previous information on this trial (May 1, 2007): A team of British doctors from Moorfields Eye Hospital and University College in London conduct first human gene therapy trials to treat Leber's congenital amaurosis, a type of inherited childhood blindness caused by a single abnormal gene. The procedure has already been successful at restoring vision for dogs. This is the first trial to use gene therapy in an operation to treat blindness in humans. See Doctors Test Gene Therapy to Treat Blindness at www.reuters.com. 

  • A combination of two tumor suppressing genes delivered in lipid-based nanoparticles drastically reduces the number and size of human lung cancer tumors in mice during trials conducted by researchers from The University of Texas M. D. Anderson Cancer Center and the University of Texas Southwestern Medical Center. See Dual Gene Therapy Suppresses Lung Cancer in Preclinical Test at www.newswise.com (January 11, 2007).
  • Researchers at the National Cancer Institute (NCI), part of the National Institutes of Health, successfully reengineer immune cells, called lymphocytes, to target and attack cancer cells in patients with advanced metastatic melanoma. This is the first time that gene therapy is used to successfully treat cancer in humans. See New Method of Gene Therapy Alters Immune Cells for Treatment of Advanced Melanoma at www.cancer.gov (August 30, 2006). 
  • Gene Therapy cures deafness in guinea pigs. Each animal had been deafened by destruction of the hair cells in the cochlea that translate sound vibrations into nerve signals. A gene, called Atoh1, which stimulates the hair cells' growth, was delivered to the cochlea by an adenovirus. The genes triggered re-growth of the hair cells and many of the animals regained up to 80% of their original hearing thresholds. This study, which many pave the way to human trials of the gene, is the first to show that gene therapy can repair deafness in animals. See Gene Therapy is First Deafness 'Cure' at NewScientist.com (February 11, 2005).

  • University of California, Los Angeles, research team gets genes into the brain using liposomes coated in a polymer call polyethylene glycol (PEG). The transfer of genes into the brain is a significant achievement because viral vectors are too big to get across the "blood-brain barrier." This method has potential for treating Parkinson's disease. See Undercover Genes Slip into the Brain at NewScientist.com (March 20, 2003).

  • RNA interference or gene silencing may be a new way to treat Huntington's. Short pieces of double-stranded RNA (short, interfering RNAs or siRNAs) are used by cells to degrade RNA of a particular sequence. If a siRNA is designed to match the RNA copied from a faulty gene, then the abnormal protein product of that gene will not be produced. See Gene Therapy May Switch off Huntington's at NewScientist.com (March 13, 2003).

  • New gene therapy approach repairs errors in messenger RNA derived from defective genes. Technique has potential to treat the blood disorder thalassaemia, cystic fibrosis, and some cancers. See Subtle Gene Therapy Tackles Blood Disorder at NewScientist.com (October 11, 2002).

  • Gene therapy for treating children with X-SCID (sever combined immunodeficiency) or the "bubble boy" disease is stopped in France when the treatment causes leukemia in one of the patients. See 'Miracle' Gene Therapy Trial Halted at NewScientist.com (October 3, 2002).

  • Researchers at Case Western Reserve University and Copernicus Therapeutics are able to create tiny liposomes 25 nanometers across that can carry therapeutic DNA through pores in the nuclear membrane. See DNA Nanoballs Boost Gene Therapy at NewScientist.com (May 12, 2002).

This free website was made using Yola.

No HTML skills required. Build your website in minutes.

Go to www.yola.com and sign up today!

Make a free website with Yola